
Web Development Techniques or:
Everything you need to know to
build a website using JavaScript

Lecture on September 21, 2017

Today's Class

● What does it mean to "open a website"
● Web languages - client, and DOM
● Web languages - server
● Test beds and distribution

The Internet

My Browser

What's on
"http://google.com" ?

A big search box on the
center of the screen
that reacts to my input
and auto-suggests
search terms

What does it mean to open a website?

http://google.com/

The Internet

My Browser

What's on
"http://google.com" ?

A big search box on the
center of the screen
that reacts to my input
and auto-suggests
search terms

Request

http://google.com

Request: What Does It Do? It specifies...
● Which server you want to communicate with: google.com
● Which protocol you're using to communicate: HTTP (vs HTTPS, FTP, GIT, SSH

and many others)
● What type of communication you want

○ Do you want something? GET
○ Are you sending something new? POST
○ Are you changing something? PUT
○ Are you deleting something? DELETE

● What you want to communicate
○ What document are you requesting / creating / updating / deleting?

/ or /search?q=visualization&source=hp
○ What content are you creating / updating?

The Internet

My Browser

A big search box on the
center of the screen
that reacts to my input
and auto-suggests
search terms

Request
GET google.com

Internet: What does it do with my GET Request?

● Using a "phone book", it finds the address of the server that's supposed to
respond to requests to "google.com". Said differently:
Domain Name Servers (DNS) resolve your host name (google.com) to an IP
address.

● This way, your request is sent to a server at Google.
● Then, google's server parses your request

Eg, "/" = "Show them the start page", and "/search?q=visualization" = "Show
them the results for a 'visualization' search"

Server

My Browser

Request
GET google.com

A big search box on the
center of the screen
that reacts to my input
and auto-suggests
search terms

Response

What does the Response do?

● It says whether the request was successful
○ 404

■ Not Found
○ 200

■ OK
○ 301

■ Moved Permanently
○ 304

■ Not Modified
○ 401/403?

■ Access Problem
○ 500

■ Internal Server Problem

What does the Response do?

● Request Status: 404 Not Found, 200 OK, 301 Moved Permanently, 304 Not
Modified, 401/403 Access Problem, 500 Internal Server Problem

● Sends caching information (keep alive)
● Sends the response content

So, what is the "response content"? Or: What is a
website?

● HTML
○ Hypertext Markup Language defines the structure and content of a web document
○ HTML is a type of XML

● CSS
○ Cascading Style Sheets define the visual appearance of the elements of a website

● JS
○ JavaScript defines the behavior of the website
○ Nothing to do with Java

Server

My Browser

Request
GET google.com

Response
HTML

Client

What would a HTML-only page look like?

You can try it by saving the page, and removing the CSS.

What does my browser do with the response HTML?

● Google's response looks
something like this.

● It sends
○ Metainformation, like a

description and a title
○ Some content
○ Links to more files, like

JavaScript and CSS!
● The browser then requests those files as well.

How do the requests play out?

Let's take a look on a live demo of requests on google.com!

Client Server Ping Pong

Server

Client

GET /

HTML

GET /styles.css

GET /code.js

Time

CSS

JS
Finally, we have
HTML, CSS, and JS.

Server

Client

Request
GET google.com
GET ../styles.css
GET ../code.js

Response
HTML
CSS
JS

The Internet

My Browser

What's on
"http://google.com" ?

A big search box on the
center of the screen
that reacts to my input
and auto-suggests
search terms

What of what you see below is still missing?

http://google.com/

Client Server Ping Pong

Server

Client

GET /

HTML

GET /styles.css

GET /code.js

Time

CSS

JS
AJAX

AJAX

Asynchronous JavaScript and XML

Allows (re-) loading parts of a webpage, or loading additional
content without re-opening the entire webpage

Can be initiated by JS (and other languages like Microsoft's ASP)

What do the AJAX requests look like?

Let's take a look!

Client Server Ping Pong

Server

Client

GET /

HTML

GET /styles.css

GET /code.js

Time

CSS

JS

AJAX: GET
https://www.google.com/
complete/search
?client=psy-ab
&q=visualiza

Additional Content
(JSON Data or
HTML)

Overview of web languages - local

● HTML, DOM
● CSS
● JS, JSON

Take a look in the inspector!

Do we need a server?

Almost always yes: Browsers have strong restrictions on what
pages can do that were just opened from the file system.

● We need a server to distribute the website and keep it
online

● We need a server to test on: local.

Options for web server languages

● Java
● Apache (static), or + PHP
● Python, e.g. SimpleHTTPServer
● JavaScript: NodeJS + Express, e.g. hello world
● Databases: SQL, or NoSQL like Mongo. Firebase

If you have a lot of data and need to operate on parts of it, you
will need to use AJAX and/or a database to look up and send
relevant data

https://docs.python.org/2/library/simplehttpserver.html
https://expressjs.com/
https://expressjs.com/en/starter/hello-world.html

Hosting Locally

● show python server
● show express server

HTML, CSS, JS: How to code

● A bit much to cover in 1 class
● Let's start with the example from before:
● Every HTML document has this structure:

○ Head for meta information,
○ Body for content.

●

HTML Elements - Some common ones

● div (divisions) are useful for structuring and positioning
● p (paragraphs) are used for text
● h1-h5 are used for titles and subtitles
● input are used for text input, radio buttons, submit buttons and almost all other

inputs (except for textarea)
● a (anchor) are used for links, both internal and external.
● ul/ol and li (unordered/ordered list and list items) are used for lists.
● span are used for styling parts of a text

Browsers have default settings for displaying each of these elements.
HTML5: Adds many elements, most of which are visually equivalent to divs, but add
more semantic meaning - such as section. Good, but not required.

CSS: Cascading Style Sheets

● Applies styles to DOM elements and their children.
● To address an element, use

○ elementtype, e.g. <input /> with input { width: 200px }
○ .classname, e.g. <input class="search" /> with .search { width: 200px }
○ #element-id, e.g. <input id="search" /> with #search { width: 200px }

● To address an element that fulfills two requirements, write them right after
each other

○ e.g. <input class="search" /> with input.search { .. }

● To address an element's children that fulfill some requirement, write them with
a space between each other:

○ e.g. <div class="search"><input /></div> with .search > input { .. }

CSS: Some styles for this example

● text-align: left, center, right
● margin: 3px 2px bottom left, or margin-top: [X]px.

○ Same for padding

● width: [X]px
● background: #hex
● border: [width]px [solid/dashed/..] #hex
● font-weight: [normal/bold]
● color: #hex for text color
● box-shadow: [X]px [Y]px [BLUR]px #hex

Live coding time Step 1: CSS

Ok, with that CSS knowledge, let's start building google!

http://tiny.cc/makegoogle

● Click "Fork" to work on your own version of the jsfiddle
● Start styling it to look as close to possible to the original Google Page

http://tiny.cc/makegoogle

JS

● Very wild and type-free and chaotic - unless you prevent it
● Very asynchronous!
● document.getElementById
● element.addEventListener(eventType, callbackFunction)

tells the element to call the callbackFunction whenever a event of type
eventType is called.

● This example uses jQuery, which is very very common and used on most
websites. It makes a lot of basic functionality easier.

d3: Data Driven Documents

"Data Binding"

https://d3js.org/#enter-exit

● enter() for new nodes
● exit() for removed nodes
● without any specific

method to update.

https://d3js.org/#enter-exit

Live coding time
Ok, let's build google step 2: JS. I prepared a tiny server that sends back
autocomplete suggestions, e.g:

http://michaschwab.de:3001/autocomplete?q=visualiza →
{"term":"visualiza","autocompletes":["visualiza 0","visualiza 1"]}

The suggestions are passed to a function "onAutocompletesChange". Use it to
display the suggestions as links (<a>) in the "autocompletes" div.

http://tiny.cc/makegoogle-two

● Click "Fork" to work on your own version of the jsfiddle
● See what you get in the console after typing in the search field
● edit onAutocompletesChange to use the results!

http://michaschwab.de:3001/autocomplete?q=visualiza
http://tiny.cc/makegoogle-two

Version Control: git (most basic)

● clone to "copy" an existing repository into your current folder. you can use this
to create new ones too, after having them created by github.

● add to add files to be under version control
● commit to save your current changes as a "stage" of the project, but this is

local.
● push to upload your local commits
● pull to download remote pushed commits

● checkout a file you have made local changes to to override/revert your local
changes

● stash changes that are in conflict with remote changes before pulling and
merging

Sandboxes / Distributing / Publishing

● JSFiddle: Live coding. Recommended for debugging and asking for help
○ Create a minimal reproducable example of your problem.
○ Most of the time, this process helps find the bug before help is even asked.

● Github Gist: Share code, e.g. this example

+ Blocks: Show the website, e.g. this example

● Github Pages: Automatic live version of a project's code.

All of these are simple http servers and don't allow you to run anything server side.

https://jsfiddle.net/
https://gist.github.com
https://gist.github.com/michaschwab/adb03b72441b1a585aae78c8a647fe16
https://bl.ocks.org/-/about
https://bl.ocks.org/michaschwab/adb03b72441b1a585aae78c8a647fe16

Notes

JS Versions: ECMA5/6, CoffeeScript, TypeScript all fine by me

Editor: I really like webstorm. some like Atom (free), and many others

SVG: Scalable Vector Graphics

● Used for most interactive visualizations on the web
● Good: Everything is reflected in the DOM.

○ Easy debugging
○ using all our developer tools
○ easy to edit

● Bad: Performance scales with the number of elements
● Alternative: WebGL.

SVG elements

● basic shapes: circle, rect, line
● group elements that can be used to move groups of elements around together
● paths

Confusing amount of ways to position elements:

● transform="translate(X, Y)" for groups
● x1="X", y1="Y" for rects and lines
● dx, dy, and x, and y, etc. → Look up the spec for the specific element.

AngularJS - if you want!

Easier data binding

Not required for this course. Can make some things easier

Hope it helped!

● If you haven't coded using JS before, get some practice now before you have
to code a nodelink visualization for your homework.

○ Maybe create some simple bar charts or something. You can also start looking at some d3
examples on https://d3js.org/ even though d3 will be covered in more detail next week.

● I'm happy to help
○ Specially if you don't know what to learn, what to focus on, what approach to take, what to do.
○ If you need help with a bug, then I can help if you do your "homework" first. Don't ask me

questions that have an easy google/stackoverflow answer.
■ If you send me a condensed jsfiddle, your chances of getting a prompt and helpful reply

are increased at least tenfold.

https://d3js.org/

